Home
Flashcards
Preview
Calculus
Home
Get App
Take Quiz
Create
Derivative of a constant
d/dx(c)=
zero
The power rule
d/dx(x
n
)=
nx
n-1
d/dx[cf(x)]=
c d/dx f(x)
The sum rule: d/dx[f(x) + g(x)]=
d/dx f(x) + d/dx g(x)
The difference rule:
d/dx[f(x)-g(x)]=
d/dx f(x) - d/dx g(x)
Product Rule:
(f(x)g(x))'=
fg ' + gf '. Or d/dx[f(x)g(x)]= f(x) d/dx g(x) + g(x) d/dx f(x)
Quotient Rule:
(f/g)'=
(gf ' - fg ')/g
2
d/dx (sin x)=
cos x
d/dx (cos x)
- sin x
d/dx (tan x)
sec
2
x
d/dx (csc x)=
-csc x cot x
d/dx (sec x)=
sec x tan x
d/dx (cot x)=
-csc
2
x
Chain rule:
If F(x)= f(g(x)), then F(x)' =
F(x)'= f ' (g(x))g'(x). Derivative of the outer function * inner function * derivative of the inner function
Power Rule Combined with the Chain rule:
d/dx (u
n
)=
nu
n-1
du/dx
Author
lbwiggains
ID
41646
Card Set
Calculus
Description
Review for rules of differentiation and integration, Stewart Textbook 5th ed.
Updated
10/18/2010, 8:30:33 PM
Show Answers
Home
Flashcards
Preview