Home
Flashcards
Preview
Calc 1 review
Home
Get App
Take Quiz
Create
∫ cot(x) dx =
= ln(|sin(x)|) + C
∫1/cos
2
(x) dx=
= tan(x) +C
d/dx [f(x)/g(x)]=
= [f'(x)g(x)-g'(x)f(x)]
----------------------
(g(x))
2
logarithmic rule
log
b
MN=
=log
b
M +log
b
N
logarithmic rule
log
b
(M/N)=
=log
b
M-log
b
N
logarithmic rule
log
b
M
p
=
=P(log
b
M)
d/dx[sin
-1
u]=
= 1
---------- (du/dx)
√(1-u
2
)
d/dx [csc-
1
u] =
= -1
------------ (du/dx)
|u|√(u
2
-1)
d/dx[cos(x)]=
= -sin(x)
d/dx[tan(x)]=
= sec
2
(x)
∫1/x dx=
= ∫x
-1
dx
= ln(|x|) + C
∫[f(x)+g(x)] dx =
= ∫f(x) dx + ∫g(x) dx
∫[f(x) -g(x)] =
=∫f(x) dx - ∫g(x) dx
d/dx [sin(u)] =
= cos(u) * du/dx
d/dx [cos(u)]=
= -sin(u) * du/dx
d/dx [e
u
]=
=e
u
* du/dx
∫a
x
dx =
=(a
x
)/(ln(a)) +C
∫sec
2
(x) dx =
=∫1/(cos
2
(x)) dx
=tan(x) +C
d/dx [c]=
= 0
d/dx [csc(x)]=
= -csc(x)cot(x)
d/dx (x) =
1
d/dx (e
x
)=
=e
x
d/dx (b
x
)=
= b
x
ln(b)
d/dx[sin(x)]=
=cos(x)
d/dx [ln(x)]=
=1/x
x>0
d/dx [ln(u)]=
=1/u * (du/dx)
x>0
d/dx [cos(u)]=
= -sin(u) * du/dx
d/dx [e
u
]=
= e
u
* du/dx
∫a
x
dx=
=(a
x
)/ln(a) +C
∫sec
2
(x)dx=
=∫1/cos
2
(x) dx
=tan(x)+C
d/dx [sec
-1(
u)]=
= 1
-------------- * (du/dx)
|u|√(u
2
+1)
d/dx [tan
-1
(u)]=
= 1
--------- * (du/dx)
u
2
+1
d/dx [c f(x)]=
=cf'(x)
du/dx [u(x)]
n
=
=n[u(x)]
n-1
* u'(x)
or
=nu
n-1
*du/dx
d/dx [csc(u)]=
= -csc(u)cot(u) *du/dx
d/dx [tan(u)]=
=sec
2
(u) * du/dx
d/dx [sec(u)]=
=sec(u)tan(u) * du/dx
∫tan(x) dx =
= ln|sec(x)| +C
or
= -ln|cos(x)|+C
d/dx[sec(x)]=
sec(x)tan(x)
d/dx (x
n
)=
=n(x
n-1
)
d/dx[cot(x)]=
= -csc
2
(x)
∫cot(x) dx=
= ln|sin(x)| + C
∫sec(x) dx =
= ln|sec(x)+tan(x)| + C
d/dx[f(x)±g(x)]=
= f'(x) ± g'(x)
d/dx [f(g(x))]=
= f'(g(x))*g'(x)
d/dx [sec(x)]=
= sec(x)tan(x)
d/dx [cot(x)]=
= -csc
2
(x)
d/dx [log
a
x]=
= 1/(x*ln(a))
d/dx log
a
u =
= 1/u*ln(a) * du/dx
∫csc
2
(x) dx =
= -cot(x)+C
∫1/(√1-x
2
) dx =
=sin
-1
(x) +C
∫sec
2
(x) dx =
= tan(x) +C
∫cot
2
(x) dx=
= -cot(x) - x + C
Author
saucyocelot
ID
358563
Card Set
Calc 1 review
Description
Review: derivatives and integration
Updated
2023-10-06T14:08:55Z
Home
Flashcards
Preview