1Topic 2.7 Hypoxia Protection 0019

  1. Learning Outcomes?
    • • Describe how oxygen can be stored or generated onboard aircraft.
    • • Describe how oxygen can be delivered to aircrew.
    • • Explain how a pressure demand oxygen regulator works.
    • • Demonstrate the functions of an ADF panel mounted regulator.
    • • State the safety rules relating to oxygen.
    • • Describe the types of aircraft pressurisation systems.
    • • Describe the physical and the physiological effects of a loss of cabin pressurisation.
    • • State the actions required in event of decompression.
    • • Describe the effects of pressure breathing.
    • • Demonstrate the pressure breathing cycle.
    • • Describe systems which protect against hypoxia in military and civilian aviation.
  2. Hypoxia protection?
    • • Ambient pressure (cabin pressurisation)
    • • Supplemental oxygen
    • • Pressure breathing
  3. Cabin pressurisation?
  4. Aircraft Pressurisation?
    • • Unpressurised
    • • Cabin = ambient
    • • ‘High differential’
    • • Cabin >> ambient
    • • ‘Low differential’
    • • Cabin > ambient
  5. High differential cabins High Differential Systems?
    • • Advantages
    • •‘Shirt sleeve’ environment
    • • Comfortable temperature
    • • wearing street clothes.
    • •Reduced pressure changes
    • •No O2 requirement
    • •No DCI risk
    • • Disadvantages
    • •Performance penalty
    • •Large decompression risk
    • • Hypoxia prevention
    • • Breathe cabin air, supplementary oxygen if cabin fails
  6. Low differential cabins Low Differential Systems?
    • • Advantages
    • •Optimum endurance
    • •Decompression risk
    • •Military population
    • • Hypoxia prevention
    • • Disadvantages
    • •Risk of hypoxia
    • •Risk of DCI
    • •Temperature
    • •Supplemental O2requirement
    • • Supplemental oxygen supply
    • • Delivery system
    • • Continuous use
  7. Loss of Cabin Pressure?
    • • Engine failure
    • • Control system failure
    • • Leaks
    • • Loss of canopy
    • • Loss of doors or windows
    • • Structural failure
    • • Weapons
  8. Decompression
    • • Size of defect
    • • Pressure differential
    • • Volume of cabin
    • • Descent profile
    • • Aerodynamic effects
  9. Physiological Effects of Rapid Decompression?
    • • Pressure changes
    • • ears, sinuses, gut
    • • Hypoxia
    • • DCI
    • • Cold
    • • Noise
    • • Air blast
  10. Aircrew Actions in the Event of a Decompression?
    • • Don oxygen immediately
    • • Select 100 % oxygen
    • • Select emergency pressure
    • • Check connections-push
    • • Breathe at normal rate and depth
    • • Initiate emergency descent <10000 ft CABALT
  11. Possible involvement of AVMO?
    • • (ASOR)
    • • PM220 Physiological Incident Form
    • • Consider DCI
    • • HD130 if DCI suspected
  12. Hypoxia protection?
    • • Ambient pressure (cabin pressurisation)
    • • Supplemental oxygen system
  13. Oxygen system?
    • • Oxygen source
    • • Regulator
    • • Mask
  14. Summary of Aircrew O2 Requirements?
    • Altitude (ft) Breathing Gas
    • 0 – 10,000 Air
    • 10 – 33,700 Increasing % O2
    • 33,700 – 40,000 100% O2
    • > 40,000 100% O2
    • Pressure breathing
  15. Ideal Oxygen System?
    • • Oxygen purity
    • • Minimal dead space
    • • Acceptable temperature
    • • Dispersion of expirate
    • • Reliable
    • • Automatic
    • • Minimum vs maximum acceptable oxygen
    • • Matches high peak inspiratory flow rates
    • • Comfortable
    • • Minimal resistance to breathing
    • • Copes with RD
    • • Pressure breathing
    • • Leakage and safety pressure
  16. Oxygen Supply?
    • • Solid
    • • Oxygen Candle
    • • Gaseous
    • • Liquid Oxygen
    • • LDBO or LOX
    • • On Board Oxygen Generation
    • • OBOGS or MSOC
  17. Solid Oxygen?
    • • Oxygen Candle
    • • Used as oxygen supply in commercial aircraft for PAX
    • • Oxygen is held in chemical combination
    • • Reaction initiated with rapid liberation of gaseous oxygen
    • • NAClO3 + Fe  FeO + NaCl + O2
  18. Solid Oxygen Problems?
    • • Continuous supply
    • •Low pressure
    • • Runs until exhausted
    • •Finite storage
    • • Many advantages:
    • • Small and light
    • • Easy supply
    • • Reliable
    • • Low risk
  19. Gaseous Oxygen?
    • • Aviator’s dry breathing oxygen
    • • CIG gas codes 420 or 430
    • • 99.7% oxygen
    • • Moisture <7ppm
    • • Colourless, odourless, tasteless
    • • Common, simple, cheap, available
    • • No ongoing losses when unused
    • • Bulky, heavy
    • • Usually 1800 psi (221 bar)
    • • 10 litre cylinder-2210 litres
  20. Liquid Oxygen?
    • • Saves space and weight
    • • Low risk of explosive hazard
    • • Inefficient, expensive, complex
    • • Hard to get, dangerous to handle
    • • Contamination a problem
    • • Limited mostly to military use
    • • 1 litre LOX yields 840 litres (NTP) O2
  21. OBOGS / MSOC?
  22. OBOGS product gas?
  23. Constant Flow Systems?
    • • Direct flow
    • • Oxygen store, mass flow regulating device, simple hose and mask
    • • 100% oxygen all the time
    • • Inefficient and wasteful
    • • Inspiration is only 40-50% of the respiratory cycle
    • • Volume flow is inversely proportional to ambient pressure
    • • Reservoir systems
    • • Excess oxygen collected during expiration, so less wasteful
  24. Demand Regulators?
    • • Automatic air dilution
    • •Economical
    • •100% oxygen possible
    • • Barostatic control
    • • safety pressure
    • • Inspiratory demand
    • Delivery Interface
    • • Oxygen delivered by
    • • Nasal cannulae
    • • Pulsed delivery
    • • Simple mask
    • • Oronasal mask
  25. Military Aviation Oronasal Masks?
    • • Inspiratory valve
    • • Expiratory valve
    • •Split compensation
    • • Anti-suffocation valve
    • • PB toggle
    • • Reflected seal
    • • Quick don, constant use
    • • 100% O2, constant flow
    • • One size fits all
    • •Leaks, air dilution
    • • Duration
    • •10 min for all pax
    • •10% of pax, >14,000 ft
    • • Tethered, no mobility
    • • Maintain PTO2 83mmHg
    • •15 000 ft
    • •As high as 20-22 000 ft
    • • Incremental O2, to 100%
    • • Well-fitting mask
    • •No leaks or dilution
    • • Long duration (hours)
    • •Demand regulator
    • • Can be attached to POS
    • • Maintain PTO2 148 mmHg
    • •MSL
  26. Mobile Aircrew?
  27. Pressure Breathing?
  28. Summary of Aircrew O2 Requirements?
    • Altitude (ft) Breathing Gas
    • 0 – 10,000 Air
    • 10 – 33,700 Increasing % O2
    • 33,700 – 40,000 100% O2
    • > 40,000 100% O2
    • Pressure breathing
  29. Aircrew O2 Requirements 0 – 10,000 ?
    • Altitude (ft) Breathing Gas
    • 0 – 10,000 Air
  30. Aircrew O2 Requirements 10 – 33,700?
    • Altitude (ft) Breathing Gas
    • 10 – 33,700 Increasing % O2
  31. Aircrew O2 Requirement 33,700 – 40,000 ?
    • Altitude (ft) Breathing Gas
    • 33,700 – 40,000 100% O2
  32. Aircrew O2 Requirements > 40,000?
    • Altitude (ft) Breathing Gas
    • > 40,000 100% O2
    • Pressure breathing
  33. Pressure breathing Breathing technique?
    - ‘In for 2… Hold for 2… Out for 4…’
  34. Problems with Pressure Breathing?
    • • Need increased mask tension
    • • Distension of upper airways & middle ear
    • • Irritation of eyes
    • • Distension of lungs and chest
    • • Increased effort of breathing
    • • Hyperventilation
    • • Circulatory effects & syncope
  35. Quiz question 10?
    • • A physiological requirement for pressure breathing exists above what altitude?
    • a. 10,000 ft b. 33,700 ft c. 40,000 ft d. 50,000 ft
Author
david_hughm
ID
328889
Card Set
1Topic 2.7 Hypoxia Protection 0019
Description
1Topic 2.7 Hypoxia Protection 0019.txt
Updated