Finals guide

  1. A transformation T: R-> Ris called a linear transformation if
    a._________________________
    b._________________________
    • a. T(u + v) = T(u) + T(v) for any u, v ϵ Rn
    • b. T(cu) = cT(u) for any u ϵ R
  2. If A is an m x n matrix, then
    Rank(A) + _______ = n
    nullity(A)
  3. True or False
    If a square matrix A is invertible, then Ais also invertible.
    True
  4. True or False
    If A is a square matrix, then ATA is always a symmetric matrix.
    True
  5. True or False
    If E is the elementary matrix obtained by performing an elementary row operation on In, and if A is n x n matrix, then AE is the result of performing the same row operation on A.
    • False
    • AE is the result of performing the same column operation on A
    • left to right, row column
  6. True or False
    If u1, u2, u3 form a basis for a subspace S, then every vector v in S can be written as a linear combination of u1, u2, u3 in exactly one way.
    True
  7. True or False
    If A is a m x n matrix, then the matrix transformation TA is a linear transformation from Rm to Rn.
    • False
    • true if Rn -> Rm
  8. Suppose that A is an n x n matrix. Write 5 different statements about A that is equivalent to the following statement.

    "A is invertible"
    • det(A) =/= 0
    • rank = n
    • RREF of A is In
    • nullity = 0
    • A is a product of elementary matrices
  9. If A is an n x n matrix, and k is a constant, then det(kA) = ___ x det(A).
    kn
  10. If λ is an eigenvalue of a square matrix A, then

    Geometric multiplicity of λ ___ Algebraic multiplicity of λ
  11. If λ is an eigenvalue of an invertible square matrix A, then ___ must be an eigenvalue of A-1
    λ-1
  12. if A = [(A1 B), (0 A2)] is a square block triangular matrix (where A1 and A2 are both square matrices) then det(A) = ___________.
    det(A1) * det(A2)
  13. If A is a real _______ square matrix, then A must be diagonalizable. (answer cannot be identity nor zero).
    symmetric
  14. if λ1, λ2, λ3 are different eigenvalues of a square matrix A, and v1, v2, v3 are corresponding eigenvectors, then v1, v2, v3 are ______________________.
    linearly independent
  15. The n x n square matrix A is said to be diagonalizable if there is an __________ n x n matrix P such that ________________.
    • invertible
    • P-1AP = D
  16. If A is an n x n matrix, then the sum of all eigenvalues of A (including multiplicity) is equal to ________.
    trace(A)
  17. If A is an n x n matrix, then the product of all eigenvalues of A (including multiplicity) is equal to ____________.
    det(A)
  18. If A is a n x n matrix such that A2 = In, then A must be diagonalizable and each eigenvalue of A must be either ___ or ___.
    -1 or 1
  19. True or False
    If A is n x n matrix and B is obtained from A by elementary row operations, then A and B have the same eigenvalues.
    False
  20. True or False
    If an n x n matrix is diagonalizable, then it is invertible.
    • False
    • the eigenvalues can be 0
  21. True or False
    If an n x n matrix has distinct eigenvalues, then it is diagonalizable.
    True
  22. True or False
    Every real symmetric n x n matrix is diagonalizable.
    True
  23. True or False
    Every diagonal n x n matrix is diagonalizable.
    True
  24. True or False
    If A is an n x n diagonalizable matrix, then every non-zero vector in Rn is an eigenvector of A.
    False

    • if Ax = 2x, A= 3y
    • A(y) = 2x + 3y
    •            =/= λ(x + y)
  25. True or False
    If A and B are similar n x n matrices, then every eigenvector of A is also an eigenvector of B and vice versa.
    False
  26. True or False
    For any square matrix A, A and AT have the same set of eigenvalues.
    True
  27. True or False
    If an n x n matrix A is diagonalizable, then A has n distinct eigenvalues.
    False
  28. True or False
    If all eigenvalues of a square matrix are zero, then A is the zero matrix.
    False

    ex. [(0 1), (0 0)]
  29. True or False
    If A and B are similar square matrices, then they have the same trace.
    True
  30. True or False
    Suppose that A is a 3 x 3 matrix and its eigenvalues are λ1, λ2, λ3. If we switch the 1st row of A with the 2nd row, then the eigenvalues of the resulting matrix will be -λ1, -λ2, -λ3.
    False
  31. True or False
    If the vector [(2), (1), (4)] is an eigenvector for a 3 x 3 matrix A, then [(4), (1), (16)] must be an eigenvector for the matrix A2.
    False
Author
wrathes
ID
312507
Card Set
Finals guide
Description
study guide
Updated