The flashcards below were created by user
huatieulans
on FreezingBlue Flashcards.
-
eine Untersuchungseinheit Bsp:
eine Person / Merkmalsträger
-
Stichprobe
sind die 7 Personen, die wir aus den 200 Personen herausgezogen haben
-
das Merkmal / Variable ist bsp
das Gehalt
-
Ausprägung
ist ein Merkmalwert, Bsp 3200€
-
stetige Merkmal /Variable
- zwischen 2 Ausprägungen besteht ein weiteres mögliche
- Bsp: bei Einkommen zwischen 1000€ und 1001€ besteht ein weiterer Wert bsp 1000,50€
- Geschwindigkeit, Preise, Temperaturen
-
diskrete Merkmal
- gibt es zwischen 2 Ausprägunge kein weitere mögliches mehr
- Bsp: zwischen Zufriedenheit von 1 und 2 gibt es kein weiteres mehr
- Anzahl der bestandenen Klausuren, oder augenzahl auf einen Würfel
-
qualitative Merkmal:
die Zahl hat an sich keinen Wert. Bsp bei Geschlecht 0 und 1, aber wir können 10 oder 100 ändern
-
quantitatives Merkmal:
die Zahl hat einen Wert und wir können nicht einfach ändern. Bsp jemand ist 20J, wir können nicht 30J ändern
-
Nominale Messniveau
- abstrakt
- =, ≠
- Bsp: bei Geschlecht, erlernenter Beruf
-
ordinale Messniveau:
- >,<
- Bsp: Zufriedenheit, Zensuren, Wind. und Erdbebenstärken,militärischer Dienstgrad
bei Zensuren kann nicht gefolgert werden, dass eine 2 (gut) doppelt so gut wie eine 4 (genügend) ist
-
X1,X2, X3
- Merkmale 1
- Merkmale 2
- Merkmale 3
-
x11, x12, x13,....x1K
Merkmalsausprägungen
-
Nr. der Untersuchungseinheit
1,2,3....n
- Person 1
- Person 2
- Person 3
- Person n
-
n
gesamtanzahl der gefragten Personen
-
metrische Skala / Intervallskala
+, -
- Abstände zwischen Merkmalswerten sind messbar und plausibel interpretierbar
- Bsp: Temperatur, Kalenderzeitrechnung
- bei IQ: zwischen IQ 90 und 100 ist der selber Abstand wie zwischen 100 u IQ 110 -> 10 IQ Abstand und sie sind nominiert gleich
- Aber: IQ von 100 ist nicht Doppel soviel wie IQ 50, weil nicht Doppel so viel schlau
-
relative Häufigkeit
h1= n1/n = %
-
x1, x2, x3,.....,xM
Merkmalsausprägungen
-
(x1...., xm,......,xM)
- Menge der möglichen Ausprägungen des Merkmals X
-
- (1,2,3....m...M)
-
absolute Häufigkeit
n(X= xm) = nm (m= 1,....,M)
-
relative Häufigkeit von xm
h(X = x m)=  = h m
mit (m= 1,2,3....., M)
-
geordnete Ausprägungen ( ordinales oder metrisches Messniveau)
x1 < x2 < xm < ...< xM
-
absolute kumulierte Häufigkeiten:
- n( X ≤ xm ) = n (X=x1) + ...... + n (X= xm)
- = n1+....+ nm
-
relative kumulierte Häufigkeiten:
- h( X ≤ xm )= n( X≤ xm) /n
- = h1+...+hm
-
Fn(x)
ist eine Treppenfunktion mit Sprunghöhe h (X=xm) an der Stelle xm ( m= 1,....,M)
-
relative kumulierte Häufigkeit
- z.B das Alter, wie viele Personen sind 17 oder jünger?
- h1 + h2 + h3 + ....+ hm = Fn (xm)
-
absolute kumulierte Häufigkeit
n( x ≤ xm ) = n( x = x1) + n ( x= x2) + ...+ n (x=xm)
-
xM
größte Merkmalsausprägung
-
x1
kleinste Merkmalsausprägung
|
|